Copied to
clipboard

G = C5×C23.23D4order 320 = 26·5

Direct product of C5 and C23.23D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C23.23D4, (C2×D4)⋊3C20, (C2×C20)⋊36D4, C2.5(D4×C20), (D4×C10)⋊27C4, (C23×C4)⋊1C10, C232(C2×C20), (C23×C20)⋊2C2, C10.136(C4×D4), C23.22(C5×D4), C10.89C22≀C2, C24.27(C2×C10), (C22×D4).1C10, C22.35(D4×C10), C2.C428C10, (C22×C10).156D4, C10.133(C4⋊D4), C23.59(C22×C10), C22.35(C22×C20), (C23×C10).87C22, (C22×C10).450C23, (C22×C20).494C22, C10.87(C22.D4), (C2×C4)⋊9(C5×D4), (C2×C4)⋊3(C2×C20), (C2×C20)⋊37(C2×C4), (D4×C2×C10).13C2, C2.2(C5×C4⋊D4), (C2×C22⋊C4)⋊2C10, (C10×C22⋊C4)⋊6C2, C2.3(C5×C22≀C2), C2.7(C10×C22⋊C4), C221(C5×C22⋊C4), (C2×C10)⋊7(C22⋊C4), (C22×C10)⋊11(C2×C4), (C2×C10).602(C2×D4), C22.20(C5×C4○D4), C10.135(C2×C22⋊C4), (C22×C4).87(C2×C10), (C2×C10).210(C4○D4), C2.3(C5×C22.D4), (C5×C2.C42)⋊24C2, (C2×C10).323(C22×C4), SmallGroup(320,887)

Series: Derived Chief Lower central Upper central

C1C22 — C5×C23.23D4
C1C2C22C23C22×C10C22×C20C10×C22⋊C4 — C5×C23.23D4
C1C22 — C5×C23.23D4
C1C22×C10 — C5×C23.23D4

Generators and relations for C5×C23.23D4
 G = < a,b,c,d,e,f | a5=b2=c2=d2=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=de-1 >

Subgroups: 498 in 286 conjugacy classes, 106 normal (30 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C10, C22⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C23×C4, C22×D4, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C23.23D4, C5×C22⋊C4, C22×C20, C22×C20, C22×C20, D4×C10, D4×C10, C23×C10, C5×C2.C42, C10×C22⋊C4, C10×C22⋊C4, C23×C20, D4×C2×C10, C5×C23.23D4
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, C23, C10, C22⋊C4, C22×C4, C2×D4, C4○D4, C20, C2×C10, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C2×C20, C5×D4, C22×C10, C23.23D4, C5×C22⋊C4, C22×C20, D4×C10, C5×C4○D4, C10×C22⋊C4, D4×C20, C5×C22≀C2, C5×C4⋊D4, C5×C22.D4, C5×C23.23D4

Smallest permutation representation of C5×C23.23D4
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 81)(2 82)(3 83)(4 84)(5 85)(6 125)(7 121)(8 122)(9 123)(10 124)(11 63)(12 64)(13 65)(14 61)(15 62)(16 146)(17 147)(18 148)(19 149)(20 150)(21 132)(22 133)(23 134)(24 135)(25 131)(26 59)(27 60)(28 56)(29 57)(30 58)(31 126)(32 127)(33 128)(34 129)(35 130)(36 76)(37 77)(38 78)(39 79)(40 80)(41 72)(42 73)(43 74)(44 75)(45 71)(46 86)(47 87)(48 88)(49 89)(50 90)(51 91)(52 92)(53 93)(54 94)(55 95)(66 106)(67 107)(68 108)(69 109)(70 110)(96 136)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)(105 145)(111 151)(112 152)(113 153)(114 154)(115 155)(116 156)(117 157)(118 158)(119 159)(120 160)
(1 66)(2 67)(3 68)(4 69)(5 70)(6 20)(7 16)(8 17)(9 18)(10 19)(11 41)(12 42)(13 43)(14 44)(15 45)(21 35)(22 31)(23 32)(24 33)(25 34)(26 39)(27 40)(28 36)(29 37)(30 38)(46 53)(47 54)(48 55)(49 51)(50 52)(56 76)(57 77)(58 78)(59 79)(60 80)(61 75)(62 71)(63 72)(64 73)(65 74)(81 106)(82 107)(83 108)(84 109)(85 110)(86 93)(87 94)(88 95)(89 91)(90 92)(96 116)(97 117)(98 118)(99 119)(100 120)(101 115)(102 111)(103 112)(104 113)(105 114)(121 146)(122 147)(123 148)(124 149)(125 150)(126 133)(127 134)(128 135)(129 131)(130 132)(136 156)(137 157)(138 158)(139 159)(140 160)(141 155)(142 151)(143 152)(144 153)(145 154)
(1 29)(2 30)(3 26)(4 27)(5 28)(6 136)(7 137)(8 138)(9 139)(10 140)(11 53)(12 54)(13 55)(14 51)(15 52)(16 157)(17 158)(18 159)(19 160)(20 156)(21 142)(22 143)(23 144)(24 145)(25 141)(31 152)(32 153)(33 154)(34 155)(35 151)(36 70)(37 66)(38 67)(39 68)(40 69)(41 46)(42 47)(43 48)(44 49)(45 50)(56 85)(57 81)(58 82)(59 83)(60 84)(61 91)(62 92)(63 93)(64 94)(65 95)(71 90)(72 86)(73 87)(74 88)(75 89)(76 110)(77 106)(78 107)(79 108)(80 109)(96 125)(97 121)(98 122)(99 123)(100 124)(101 131)(102 132)(103 133)(104 134)(105 135)(111 130)(112 126)(113 127)(114 128)(115 129)(116 150)(117 146)(118 147)(119 148)(120 149)
(1 134 54 121)(2 135 55 122)(3 131 51 123)(4 132 52 124)(5 133 53 125)(6 85 22 93)(7 81 23 94)(8 82 24 95)(9 83 25 91)(10 84 21 92)(11 96 28 103)(12 97 29 104)(13 98 30 105)(14 99 26 101)(15 100 27 102)(16 106 32 87)(17 107 33 88)(18 108 34 89)(19 109 35 90)(20 110 31 86)(36 112 41 116)(37 113 42 117)(38 114 43 118)(39 115 44 119)(40 111 45 120)(46 150 70 126)(47 146 66 127)(48 147 67 128)(49 148 68 129)(50 149 69 130)(56 143 63 136)(57 144 64 137)(58 145 65 138)(59 141 61 139)(60 142 62 140)(71 160 80 151)(72 156 76 152)(73 157 77 153)(74 158 78 154)(75 159 79 155)
(1 12)(2 13)(3 14)(4 15)(5 11)(6 20)(7 16)(8 17)(9 18)(10 19)(21 35)(22 31)(23 32)(24 33)(25 34)(26 51)(27 52)(28 53)(29 54)(30 55)(36 46)(37 47)(38 48)(39 49)(40 50)(41 70)(42 66)(43 67)(44 68)(45 69)(56 86)(57 87)(58 88)(59 89)(60 90)(61 108)(62 109)(63 110)(64 106)(65 107)(71 84)(72 85)(73 81)(74 82)(75 83)(76 93)(77 94)(78 95)(79 91)(80 92)(136 156)(137 157)(138 158)(139 159)(140 160)(141 155)(142 151)(143 152)(144 153)(145 154)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,81)(2,82)(3,83)(4,84)(5,85)(6,125)(7,121)(8,122)(9,123)(10,124)(11,63)(12,64)(13,65)(14,61)(15,62)(16,146)(17,147)(18,148)(19,149)(20,150)(21,132)(22,133)(23,134)(24,135)(25,131)(26,59)(27,60)(28,56)(29,57)(30,58)(31,126)(32,127)(33,128)(34,129)(35,130)(36,76)(37,77)(38,78)(39,79)(40,80)(41,72)(42,73)(43,74)(44,75)(45,71)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(66,106)(67,107)(68,108)(69,109)(70,110)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,66)(2,67)(3,68)(4,69)(5,70)(6,20)(7,16)(8,17)(9,18)(10,19)(11,41)(12,42)(13,43)(14,44)(15,45)(21,35)(22,31)(23,32)(24,33)(25,34)(26,39)(27,40)(28,36)(29,37)(30,38)(46,53)(47,54)(48,55)(49,51)(50,52)(56,76)(57,77)(58,78)(59,79)(60,80)(61,75)(62,71)(63,72)(64,73)(65,74)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,116)(97,117)(98,118)(99,119)(100,120)(101,115)(102,111)(103,112)(104,113)(105,114)(121,146)(122,147)(123,148)(124,149)(125,150)(126,133)(127,134)(128,135)(129,131)(130,132)(136,156)(137,157)(138,158)(139,159)(140,160)(141,155)(142,151)(143,152)(144,153)(145,154), (1,29)(2,30)(3,26)(4,27)(5,28)(6,136)(7,137)(8,138)(9,139)(10,140)(11,53)(12,54)(13,55)(14,51)(15,52)(16,157)(17,158)(18,159)(19,160)(20,156)(21,142)(22,143)(23,144)(24,145)(25,141)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(41,46)(42,47)(43,48)(44,49)(45,50)(56,85)(57,81)(58,82)(59,83)(60,84)(61,91)(62,92)(63,93)(64,94)(65,95)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,125)(97,121)(98,122)(99,123)(100,124)(101,131)(102,132)(103,133)(104,134)(105,135)(111,130)(112,126)(113,127)(114,128)(115,129)(116,150)(117,146)(118,147)(119,148)(120,149), (1,134,54,121)(2,135,55,122)(3,131,51,123)(4,132,52,124)(5,133,53,125)(6,85,22,93)(7,81,23,94)(8,82,24,95)(9,83,25,91)(10,84,21,92)(11,96,28,103)(12,97,29,104)(13,98,30,105)(14,99,26,101)(15,100,27,102)(16,106,32,87)(17,107,33,88)(18,108,34,89)(19,109,35,90)(20,110,31,86)(36,112,41,116)(37,113,42,117)(38,114,43,118)(39,115,44,119)(40,111,45,120)(46,150,70,126)(47,146,66,127)(48,147,67,128)(49,148,68,129)(50,149,69,130)(56,143,63,136)(57,144,64,137)(58,145,65,138)(59,141,61,139)(60,142,62,140)(71,160,80,151)(72,156,76,152)(73,157,77,153)(74,158,78,154)(75,159,79,155), (1,12)(2,13)(3,14)(4,15)(5,11)(6,20)(7,16)(8,17)(9,18)(10,19)(21,35)(22,31)(23,32)(24,33)(25,34)(26,51)(27,52)(28,53)(29,54)(30,55)(36,46)(37,47)(38,48)(39,49)(40,50)(41,70)(42,66)(43,67)(44,68)(45,69)(56,86)(57,87)(58,88)(59,89)(60,90)(61,108)(62,109)(63,110)(64,106)(65,107)(71,84)(72,85)(73,81)(74,82)(75,83)(76,93)(77,94)(78,95)(79,91)(80,92)(136,156)(137,157)(138,158)(139,159)(140,160)(141,155)(142,151)(143,152)(144,153)(145,154)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,81)(2,82)(3,83)(4,84)(5,85)(6,125)(7,121)(8,122)(9,123)(10,124)(11,63)(12,64)(13,65)(14,61)(15,62)(16,146)(17,147)(18,148)(19,149)(20,150)(21,132)(22,133)(23,134)(24,135)(25,131)(26,59)(27,60)(28,56)(29,57)(30,58)(31,126)(32,127)(33,128)(34,129)(35,130)(36,76)(37,77)(38,78)(39,79)(40,80)(41,72)(42,73)(43,74)(44,75)(45,71)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(66,106)(67,107)(68,108)(69,109)(70,110)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,66)(2,67)(3,68)(4,69)(5,70)(6,20)(7,16)(8,17)(9,18)(10,19)(11,41)(12,42)(13,43)(14,44)(15,45)(21,35)(22,31)(23,32)(24,33)(25,34)(26,39)(27,40)(28,36)(29,37)(30,38)(46,53)(47,54)(48,55)(49,51)(50,52)(56,76)(57,77)(58,78)(59,79)(60,80)(61,75)(62,71)(63,72)(64,73)(65,74)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,116)(97,117)(98,118)(99,119)(100,120)(101,115)(102,111)(103,112)(104,113)(105,114)(121,146)(122,147)(123,148)(124,149)(125,150)(126,133)(127,134)(128,135)(129,131)(130,132)(136,156)(137,157)(138,158)(139,159)(140,160)(141,155)(142,151)(143,152)(144,153)(145,154), (1,29)(2,30)(3,26)(4,27)(5,28)(6,136)(7,137)(8,138)(9,139)(10,140)(11,53)(12,54)(13,55)(14,51)(15,52)(16,157)(17,158)(18,159)(19,160)(20,156)(21,142)(22,143)(23,144)(24,145)(25,141)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(41,46)(42,47)(43,48)(44,49)(45,50)(56,85)(57,81)(58,82)(59,83)(60,84)(61,91)(62,92)(63,93)(64,94)(65,95)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,125)(97,121)(98,122)(99,123)(100,124)(101,131)(102,132)(103,133)(104,134)(105,135)(111,130)(112,126)(113,127)(114,128)(115,129)(116,150)(117,146)(118,147)(119,148)(120,149), (1,134,54,121)(2,135,55,122)(3,131,51,123)(4,132,52,124)(5,133,53,125)(6,85,22,93)(7,81,23,94)(8,82,24,95)(9,83,25,91)(10,84,21,92)(11,96,28,103)(12,97,29,104)(13,98,30,105)(14,99,26,101)(15,100,27,102)(16,106,32,87)(17,107,33,88)(18,108,34,89)(19,109,35,90)(20,110,31,86)(36,112,41,116)(37,113,42,117)(38,114,43,118)(39,115,44,119)(40,111,45,120)(46,150,70,126)(47,146,66,127)(48,147,67,128)(49,148,68,129)(50,149,69,130)(56,143,63,136)(57,144,64,137)(58,145,65,138)(59,141,61,139)(60,142,62,140)(71,160,80,151)(72,156,76,152)(73,157,77,153)(74,158,78,154)(75,159,79,155), (1,12)(2,13)(3,14)(4,15)(5,11)(6,20)(7,16)(8,17)(9,18)(10,19)(21,35)(22,31)(23,32)(24,33)(25,34)(26,51)(27,52)(28,53)(29,54)(30,55)(36,46)(37,47)(38,48)(39,49)(40,50)(41,70)(42,66)(43,67)(44,68)(45,69)(56,86)(57,87)(58,88)(59,89)(60,90)(61,108)(62,109)(63,110)(64,106)(65,107)(71,84)(72,85)(73,81)(74,82)(75,83)(76,93)(77,94)(78,95)(79,91)(80,92)(136,156)(137,157)(138,158)(139,159)(140,160)(141,155)(142,151)(143,152)(144,153)(145,154) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,81),(2,82),(3,83),(4,84),(5,85),(6,125),(7,121),(8,122),(9,123),(10,124),(11,63),(12,64),(13,65),(14,61),(15,62),(16,146),(17,147),(18,148),(19,149),(20,150),(21,132),(22,133),(23,134),(24,135),(25,131),(26,59),(27,60),(28,56),(29,57),(30,58),(31,126),(32,127),(33,128),(34,129),(35,130),(36,76),(37,77),(38,78),(39,79),(40,80),(41,72),(42,73),(43,74),(44,75),(45,71),(46,86),(47,87),(48,88),(49,89),(50,90),(51,91),(52,92),(53,93),(54,94),(55,95),(66,106),(67,107),(68,108),(69,109),(70,110),(96,136),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144),(105,145),(111,151),(112,152),(113,153),(114,154),(115,155),(116,156),(117,157),(118,158),(119,159),(120,160)], [(1,66),(2,67),(3,68),(4,69),(5,70),(6,20),(7,16),(8,17),(9,18),(10,19),(11,41),(12,42),(13,43),(14,44),(15,45),(21,35),(22,31),(23,32),(24,33),(25,34),(26,39),(27,40),(28,36),(29,37),(30,38),(46,53),(47,54),(48,55),(49,51),(50,52),(56,76),(57,77),(58,78),(59,79),(60,80),(61,75),(62,71),(63,72),(64,73),(65,74),(81,106),(82,107),(83,108),(84,109),(85,110),(86,93),(87,94),(88,95),(89,91),(90,92),(96,116),(97,117),(98,118),(99,119),(100,120),(101,115),(102,111),(103,112),(104,113),(105,114),(121,146),(122,147),(123,148),(124,149),(125,150),(126,133),(127,134),(128,135),(129,131),(130,132),(136,156),(137,157),(138,158),(139,159),(140,160),(141,155),(142,151),(143,152),(144,153),(145,154)], [(1,29),(2,30),(3,26),(4,27),(5,28),(6,136),(7,137),(8,138),(9,139),(10,140),(11,53),(12,54),(13,55),(14,51),(15,52),(16,157),(17,158),(18,159),(19,160),(20,156),(21,142),(22,143),(23,144),(24,145),(25,141),(31,152),(32,153),(33,154),(34,155),(35,151),(36,70),(37,66),(38,67),(39,68),(40,69),(41,46),(42,47),(43,48),(44,49),(45,50),(56,85),(57,81),(58,82),(59,83),(60,84),(61,91),(62,92),(63,93),(64,94),(65,95),(71,90),(72,86),(73,87),(74,88),(75,89),(76,110),(77,106),(78,107),(79,108),(80,109),(96,125),(97,121),(98,122),(99,123),(100,124),(101,131),(102,132),(103,133),(104,134),(105,135),(111,130),(112,126),(113,127),(114,128),(115,129),(116,150),(117,146),(118,147),(119,148),(120,149)], [(1,134,54,121),(2,135,55,122),(3,131,51,123),(4,132,52,124),(5,133,53,125),(6,85,22,93),(7,81,23,94),(8,82,24,95),(9,83,25,91),(10,84,21,92),(11,96,28,103),(12,97,29,104),(13,98,30,105),(14,99,26,101),(15,100,27,102),(16,106,32,87),(17,107,33,88),(18,108,34,89),(19,109,35,90),(20,110,31,86),(36,112,41,116),(37,113,42,117),(38,114,43,118),(39,115,44,119),(40,111,45,120),(46,150,70,126),(47,146,66,127),(48,147,67,128),(49,148,68,129),(50,149,69,130),(56,143,63,136),(57,144,64,137),(58,145,65,138),(59,141,61,139),(60,142,62,140),(71,160,80,151),(72,156,76,152),(73,157,77,153),(74,158,78,154),(75,159,79,155)], [(1,12),(2,13),(3,14),(4,15),(5,11),(6,20),(7,16),(8,17),(9,18),(10,19),(21,35),(22,31),(23,32),(24,33),(25,34),(26,51),(27,52),(28,53),(29,54),(30,55),(36,46),(37,47),(38,48),(39,49),(40,50),(41,70),(42,66),(43,67),(44,68),(45,69),(56,86),(57,87),(58,88),(59,89),(60,90),(61,108),(62,109),(63,110),(64,106),(65,107),(71,84),(72,85),(73,81),(74,82),(75,83),(76,93),(77,94),(78,95),(79,91),(80,92),(136,156),(137,157),(138,158),(139,159),(140,160),(141,155),(142,151),(143,152),(144,153),(145,154)]])

140 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A···4H4I···4N5A5B5C5D10A···10AB10AC···10AR10AS···10AZ20A···20AF20AG···20BD
order12···22222224···44···4555510···1010···1010···1020···2020···20
size11···12222442···24···411111···12···24···42···24···4

140 irreducible representations

dim111111111111222222
type+++++++
imageC1C2C2C2C2C4C5C10C10C10C10C20D4D4C4○D4C5×D4C5×D4C5×C4○D4
kernelC5×C23.23D4C5×C2.C42C10×C22⋊C4C23×C20D4×C2×C10D4×C10C23.23D4C2.C42C2×C22⋊C4C23×C4C22×D4C2×D4C2×C20C22×C10C2×C10C2×C4C23C22
# reps12311848124432444161616

Matrix representation of C5×C23.23D4 in GL5(𝔽41)

10000
01000
00100
000100
000010
,
10000
00100
01000
00001
00010
,
10000
040000
004000
000400
000040
,
400000
040000
004000
000400
000040
,
320000
09000
00900
000040
000400
,
400000
01000
004000
000400
00001

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,10,0,0,0,0,0,10],[1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[32,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,40,0],[40,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1] >;

C5×C23.23D4 in GAP, Magma, Sage, TeX

C_5\times C_2^3._{23}D_4
% in TeX

G:=Group("C5xC2^3.23D4");
// GroupNames label

G:=SmallGroup(320,887);
// by ID

G=gap.SmallGroup(320,887);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,1120,589,1408,1766]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=d*e^-1>;
// generators/relations

׿
×
𝔽